Intersectional Gene Expression in Zebrafish Using the Split KalTA4 System.

نویسندگان

  • Rafael Gois Almeida
  • David Anthony Lyons
چکیده

In this study, we describe the adaptation of the split Gal4 system for zebrafish. The Gal4-UAS system is widely used for expression of genes-of-interest by crossing driver lines expressing the transcription factor Gal4 (under the control of the promoter of interest) with reporter lines where upstream activating sequence (UAS) repeats (recognized by Gal4) drive expression of the genes-of-interest. In the Split Gal4 system, hemi-drivers separately encode the DNA-binding domain (DBD) and the activation domain (AD) of Gal4. When encoded under two different promoters, only those cells in the intersection of the promoters' expression pattern and in which both promoters are active reconstitute a functional Gal4 and activate expression from a UAS-driven transgene. We split the zebrafish-optimized version of Gal4, KalTA4, and generated a hemi-driver encoding the KalTA4 DBD and a hemi-driver encoding KalTA4's AD. We show that split KalTA4 domains can assemble in vivo and transactivate a UAS reporter transgene and that each hemi-driver alone cannot transactivate the reporter. Also, transactivation can happen in several cell types, with similar efficiency to intact KalTA4. Finally, in transient mosaic expression assays, we show that when hemi-drivers are preceded by two distinct promoters, they restrict the expression of an UAS-driven reporter from a broader pattern (sox10) to its constituent smaller neuronal pattern. The Split KalTA4 system should be useful for expression of genes-of-interest in an intersectional manner, allowing for more refined manipulations of cell populations in zebrafish.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Gal4 genetics for permanent gene expression mapping in zebrafish.

Combinatorial genetics for conditional transgene activation allows studying gene function with temporal and tissue specific control like the Gal4-UAS system, which has enabled sophisticated genetic studies in Drosophila. Recently this system was adapted for zebrafish and promising applications have been introduced. Here, we report a systematic optimization of zebrafish Gal4-UAS genetics by esta...

متن کامل

Live Imaging of Innate Immune and Preneoplastic Cell Interactions Using an Inducible Gal4/UAS Expression System in Larval Zebrafish Skin

Here we describe a method to conditionally induce epithelial cell transformation by the use of the 4-Hydroxytamoxifen (4-OHT) inducible KalTA4-ERT2/UAS expression system(1) in zebrafish larvae, and the subsequent live imaging of innate immune cell interaction with HRASG12V expressing skin cells. The KalTA4-ERT2/UAS system is both inducible and reversible which allows us to induce cell transform...

متن کامل

Intersectional Cre Driver Lines Generated Using Split-Intein Mediated Split-Cre Reconstitution

Tissue and cell type highly specific Cre drivers are very rare due to the fact that most genes or promoters used to direct Cre expressions are generally expressed in more than one tissues and/or in multiple cell types. We developed a split-intein based split-Cre system for highly efficient Cre-reconstitution through protein splicing. This split-intein-split-Cre system can be used to intersect t...

متن کامل

Antioxidant and immune gene expression in zebra fish (Danio rerio)

Iodine is the main ingredient produced by the thyroid hormone, which playa a central role in the metabolism and the immune system. The present study aims to evaluate the effects of feeding Artemia fransiscana enriched with potassium iodide on antioxidant and immune gene expression in zebra fish (Danio rerio). Zebra larvae with an average weight of 2±0.01 mg were randomly distributed into 4 trea...

متن کامل

Factors affecting delivery of DREB1A gene in maize B73 split-seeds via biolistic system

Immature embryos as a choice tissue for genetic transformation of maize have a few limitations, such as genotype dependence, time-consuming and requiring a well-equipped greenhouse for access, at any time. In the present study, the split-seed explants were used for genetic transformation of maize, B73 line. The transformation of maize split-seed explants from the inbred line B73, for resistance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Zebrafish

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2015